Тест простоты Рабина

Тест простоты Рабина © Борисенко, мех-мат МГУ Напомним необходимые нам результаты из элементарной теории чисел и алгебры Малая теорема Ферма. Пусть p -- простое число. Тогда для всякого целого числа b, отличного от нуля, справедливо сравнение bp-1 == 1 (mod p). Малая теорема Ферма является непосредственным следствием теоремы Лагранжа (порядок любого элемента группы делит порядок группы) и того факта, что кольцо Zp в случае простого p является полем, т.е. все его ненулевые элементы принадлежат группе обратимых элементов. Порядок группы обратимых элементов кольца Zp равен p-1. Простейший тест проверки простоты числа m состоит в проверке малой теоремы Ферма. Выберем произвольное целое число b (например, b = 2), и возведем его в степень m - 1 по модулю m. Если мы получим не единицу, то по малой теореме Ферма число m составное. Беда состоит в том, что если bm-1 == 1 (mod m), то ничего нельзя сказать об m. Древние греки ошибочно полагали, что все числа m, удовлетворяющие обращению малой теоремы Ферма для основания 2, простые: если 2m-1 == 1 (mod m), то m -- простое число. Минимальный контрпример к этому утверждению был найден только в XVII веке: 2340 == 1 (mod 341), но число 341 -- не простое, 341 = 11 * 31. (Действительно, 2340 = (2^10)34 = 102434, но 1024 = 3 * 341 + 1 == 1 (mod 341), поэтому 102434 == 1 (mod 341).) То, что 341 не удовлетворяет малой теореме Ферма, может быть показано с помощью других оснований: 3340 == 56 (mod 341) Тем не менее существуют числа, которые не являются простыми, но которые ведут себя как простые в малой теореме Ферма. Такие числа называются кармайкловыми. Определение. Число m называется кармайкловым, если оно не простое и для всякого b, взаимно простого с m, выполняется утверждение малой теоремы Ферма: bm-1 == 1 (mod m). Минимальные кармайкловы числа -- это 561, 1105, 1729, ... Множество кармайкловых чисел бесконечно, и их плотность стремится к нулю на бесконечности. Несложно доказать следующее утверждение. Предложение 5. Пусть m = p1e1 * p2e2 * ... * pkek -- представление целого числа m в виде произведения степеней простых. Число m является кармайкловым тогда и только тогда, когда 1) для всякого i показатель степени ei = 1; 2) k >= 3; 3) для всякого i число pi - 1 делит m - 1. Доказательство. Докажем только обратную, наиболее интересную импликацию. Пусть число m удовлетворяет условиям 1-3. Рассмотрим произвольное b, взаимно простое с m. По Китайской теореме об остатках, кольцо Zm представляется в виде прямой суммы Zm == Zp1 + Zp2 + ... + Zpk. При этом изоморфизме элемен b представляется в виде строки b == (b1, b2, ..., bk) Тогда bm-1 == (b1m-1, b2m-1, ..., bkm-1. По малой теореме Ферма, для всякого i bim-1 == 1 (mod pi), поскольку (m - 1) делится на (pi - 1). Поэтому bm-1 == (1, 1, ..., 1) т.е. bm-1 == 1 (mod m). Пример. Покажем, что число 561 является кармайкловым. Действительно, 561 = 3 * 11 * 17. Имеем (3 - 1) | 560, (11 - 1) | 560, (17 - 1) | 560. Следовательно, число 561 удовлетворяет условиям предложения 5. Итак, для кармайкловых чисел тест простоты, основанный на теореме Ферма, не работает. Тем не менее его модификация, предложенная Рабином, применима к любым целым числам. Тест Рабина является вероятностным. Это означает, что он использует датчик случайных чисел и, таким образом, работает не детерминированно. Для входного целого числа m тест Рабина может выдать один из следующих двух ответов. 1. Число m является составным. 2. Не знаю. В случае первого ответа число m действительно является составным, тест Рабина предъявляет доказательство этого факта. Второй ответ может быть выдан как для простого, так и для составного числа m. Однако для любого составного числа m вероятность второго ответа не превышает 1/4. Ценность теста Рабина состоит именно в неравенстве, ограничевающем сверху вероятность второго ответа для произвольного составного числа m. Таким образом, если мы применим 100 раз тест Рабина к числу m и получим 100 ответов "не знаю", то можно с большой вероятностью утверждать, что число m простое. Более точно, вероятность получения ста ответов "не знаю" для составного числа m не превышает (1/4)100, т.е. практически равна нулю. Тем не менее тест Рабина не предъявляет доказательства того, что число m простое. Перейдем непосредственно к изложению теста Рабина. Мы проверяем простоту входного числа m. Допустим сразу, что число m нечетное. (Существует только одно четное простое число -- 2.) Тогда число m - 1 четное. Представим его в виде m - 1 = 2t * sгде s -- нечетное число. Выберем случайное число b такое, что b =/= 0, b =/= 1 (mod m), 1 < b < mПри выборе b используется датчик случайных чисел. Используя алгоритм быстрого возведения в степень по модулю m, вычислим следующую последовательность элементов кольца Zm: x0 == bs (mod m), (1) x1 == x0 * x0 (mod m), x2 == x1 * x1 (mod m), ... xt == xt-1 * xt-1 == bm - 1 (mod m) (На каждом шаге мы возводим в квадрат число, полученное на предыдущем шаге.) Тест Рабина выдает ответ 'm -- составное число' в случае, если 1) xt =/= 1 (mod m), или 2) в последовательности x0, x1, x2, ..., xt имеется фрагмент вида ..., *, 1, ... где звездочкой обозначено число, отличное от единицы или минус единицы по модулю m. В противном случае тест Рабина выдает ответ "не знаю". Последовательность x0, x1, ..., xt в этом "плохом" случае либо начинается с единицы, либо содержит (-1) где-нибудь не в конце. Cуществует алгоритм, доказывающий простоту, со сложностью O(ln3n), согласно которому необходимо провести тест Рабина со всеми числами 2 <= b < 70ln2m,а затем проверить, не является ли m степенью простого числа. Однако его правильность зависит от недоказанной в настоящее время гипотезы Римана. Этот алгоритм, опираясь на недоказанный факт, в принципе может 'соврать' в отношении доказательства простоты, хотя если тест Рабина говорит, что число составное, значит так оно и есть. На практике он работает очень даже неплохо. Теорема (законность теста Рабина). 1. Если тест Рабина выдает ответ 'm -- составное число', то m действительно является составным. 2. Вероятность ответа 'не знаю' для составного числа m не превосходит 1/4. Доказательство. Докажем только первое утверждение. Если xt =/= 1 (mod m), то m не удовлетворяет малой теореме Ферма и, следовательно, не является простым. Если же последовательность (1) содержит фрагмент ..., a, 1, ..., где a =/= +-1 (mod m), то имеем a2 == 1 (mod m), a =/= 1, a =/= -1 (mod m) Если бы m было простым, то кольцо Zm являлось бы полем. Но в любом поле есть только два квадратных корня из единицы: это единица и минус единица. (По теореме Безу, число корней многочлена не превосходит его степени, квадратные корни из единицы -- это корни многочлена x2 - 1.) Следовательно, число m не является простым. Пример программы

{IsPrime.Pas ver. 2.0 (c) Max Alekseyev <relf@os2.ru>, 2:5015/60@FidoNet}
{Реализация вероятностного алгоритма Миллера-Рабина с 20 раундами.
Для примера выдает простые на отрезке [1000000000,1000100000].
Вероятность ошибки (то, что составное число будет названо простым) меньше
4^(-Rounds).}

const Rounds=20;
function mulmod(x,y,m:longint):longint; assembler;
asm
{$IFDEF USE32}
 mov eax,x
 mul y
 div m
 mov eax,edx
{$ELSE}
 db $66; mov ax,word ptr x
 db $66; mul word ptr y
 db $66; div word ptr m
 mov ax,dx
 db $66; shr dx,16
{$ENDIF}
end;
function powmod(x,a,m:longint):longint;
var r:longint;
begin
 r:=1;
 while a>0 do
 begin
  if odd(a) then r:=mulmod(r,x,m);
  a:=a shr 1;
  x:=mulmod(x,x,m);
 end;
 powmod:=r;
end;
function isprime(p:longint):boolean;
var q,i,a:longint;
begin
if odd(p) and (p>1) then
begin
 isprime:=true;
 q:=p-1;
 repeat q:=q shr 1; until odd(q);
 for i:=1 to Rounds do
 begin
  {$IFDEF USE32}
     a:=Random(p-2)+2; {$ELSE} a:=2+Trunc(Random*(p-2)); {$ENDIF}
  if powmod(a,p-1,p)<>1 then
  begin
  isprime:=false; break;
  end;
  a:=powmod(a,q,p);
  if a<>1 then
  begin
  while (a<>1) and (a<>p-1) do a:=mulmod(a,a,p);
  if a=1 then
  begin
  isprime:=false; break;
  end;
  end;
 end;
end else isprime:=(p=2);
end;
var t:longint;
begin
 Randomize; {Don't forget to reset Random Generator!}
 for t:=1000000000 to 1000100000 do if isprime(t) then writeln(t);
end.

http://algolist.manual.ru

Отправить комментарий

Содержание этого поля является приватным и не предназначено к показу.
Проверка
Антиспам проверка
Image CAPTCHA
...